52 research outputs found

    Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds

    Get PDF
    Macroids and rhodoliths, made by encrusting acervulinid foraminifera and coralline algae, are widely recognized as bioengineers providing relatively stable microhabitats and increasing biodiversity for other species. Macroid and rhodolith beds occur in different depositional settings at various localities and bathymetries worldwide. Six case studies of macroid/rhodolith beds from 0 to 117m water depth in the Pacific Ocean (northern Central Ryukyu Islands, French Polynesia), eastern Australia (Fraser Island, One Tree Reef, Lizard Island), and the Mediterranean Sea (southeastern Spain) show that nodules in the beds are perforated by small-sized boring bivalve traces (Gastrochanolites). On average, boring bivalve shells (gastrochaenids and mytilids) are more slender and smaller than those living inside shallow-water rocky substrates. In the Pacific, Gastrochaena cuneiformis, Gastrochaena sp., Leiosolenus malaccanus, L. mucronatus, L. spp., and Lithophaga/Leiosolenus sp., for the first time identified below 20m water depth, occur as juvenile forms along with rare small-sized adults. In deep-water macroids and rhodoliths the boring bivalves are larger than the shallower counterparts in which growth of juveniles is probably restrained by higher overturn rates of host nodules. In general, most boring bivalves are juveniles that grew faster than the acervulinid foraminiferal and coralline red algal hosts and rarely reached the adult stage. As a consequence of phenotypic plasticity, small-sized adults with slow growth rates coexist with juveniles. Below wave base macroids and rhodoliths had the highest amounts of bioerosion, mainly produced by sponges and polychaete worms. These modern observations provide bases for paleobiological inferences in fossil occurrences.Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) 25247083Erasmus+FAR2012-2017FIR2016FIR2018PRIN "Biotic resilience to global change: biomineralization of planktonic and benthic calcifiers in the past, present and future" 2017RX9XXXYBioMed Central-Prepay Membership at the University of FerraraJunta de Andalucía RNM 190Committee on ResearchMuseum of PaleontologyDepartment of Integrative Biology, UC BerkeleyUC Pacific Rim Projec

    The Red Sea, Coastal Landscapes, and Hominin Dispersals

    Get PDF
    This chapter provides a critical assessment of environment, landscape and resources in the Red Sea region over the past five million years in relation to archaeological evidence of hominin settlement, and of current hypotheses about the role of the region as a pathway or obstacle to population dispersals between Africa and Asia and the possible significance of coastal colonization. The discussion assesses the impact of factors such as topography and the distribution of resources on land and on the seacoast, taking account of geographical variation and changes in geology, sea levels and palaeoclimate. The merits of northern and southern routes of movement at either end of the Red Sea are compared. All the evidence indicates that there has been no land connection at the southern end since the beginning of the Pliocene period, but that short sea crossings would have been possible at lowest sea-level stands with little or no technical aids. More important than the possibilities of crossing the southern channel is the nature of the resources available in the adjacent coastal zones. There were many climatic episodes wetter than today, and during these periods water draining from the Arabian escarpment provided productive conditions for large mammals and human populations in coastal regions and eastwards into the desert. During drier episodes the coastal region would have provided important refugia both in upland areas and on the emerged shelves exposed by lowered sea level, especially in the southern sector and on both sides of the Red Sea. Marine resources may have offered an added advantage in coastal areas, but evidence for their exploitation is very limited, and their role has been over-exaggerated in hypotheses of coastal colonization

    Spatial and temporal facies evolution of a Lower Jurassic carbonate platform, NW Tethyan margin (Mallorca, Spain)

    Get PDF
    The variety of depositional facies of a Lower Jurassic carbonate platform has been investigated on the island of Mallorca along a transect comprising six stratigraphic profiles. Twenty-nine facies and sub-facies have been recognized, grouped into seven facies associations, ranging in depositional environment from supratidal/terrestrial and peritidal to outer platform. Spatial and temporal (2D) facies distribution along the transect reflects the evolution of the carbonate platform with time showing different facies associations, from a broad peritidal platform (stage 1) to a muddy open platform (stage 2), and finally to a peritidal to outer carbonate platform (stage 3). Stage 1 (early Sinemurian to earliest late Sinemurian) corresponds to a nearly-flat peritidal-shallow subtidal epicontinental platform with facies belts that shifted far and fast over the whole study area. The evolution from stage 1 to stage 2 (late Sinemurian) represents a rapid flooding of the epicontinental shallow platform, with more open-marine conditions, and the onset of differential subsidence. During stage 3 (latest Sinemurian), peritidal and shallow-platform environments preferentially developed to the northeast (Llevant Mountains domain) with a rapid transition to middle-outer platform environments toward the northwest (Tramuntana Range domain). Stages 1 and 3 present facies associations typical of Bahamian-type carbonates, whereas stage 2 represents the demise of the Bahamian-type carbonate factory and proliferation of muddy substrates with suspension-feeders. The described platform evolution responded to the interplay between the initial extensional tectonic phases related to Early Jurassic Tethyan rifting, contemporaneous environmental perturbations, and progressive platform flooding related to the Late Triassic–Early Jurassic worldwide marine transgression and associated accommodation changes
    corecore